Lection 4. The Uncertainty Principle . The Schrodinger equation

time-dependent equation- HecTanoHapHOE ypaBHEHHE

partial differential equation - muddepeHunanbHOEe ypaBHEHHE B YaCTHBIX IPOU3BOIHBIX
one-dimensional, three- dimensional - omHOMepHOE, TpEXMEpPHOE

imaginary unit - MEIMas eUHAIIA

temporal and spatial parts - BpemeHHasi 1 IPOCTPAHCTBEHHAS YaCTh

an infinite rigid box - TBeppIii sty (6eCKOHEYHO TTyOOKast MOTEHIMAIbHAS SIMa)

Goal. To give definition to the uncertainty principle and to use the Schrodinger equation

Let the particle moves in free space with constant velocity. De Broglie has assumed that plain
monochromatic wave is connected with such particle, extending in a direction of the velocity

Y= Aei(ﬁ—ax) _ Aei[k;it]

About the nature of this wave, i.e. physical sense of function, de Broglie couldn't tell anything. These
waves have received the name of phase waves, waves of substance or de Broglie waves.

According M.Born square of absolute value of psi-function denotes the probability dP that the
particle will be found in element dV :

dP =|¥[ dv

|‘P(x, Y, z)|2 is probability density of particle to be found at the point X, Y, z
[dP=[l¥[dv =1

is the

probability density for finding the particle at X . This means that in the case of a one-dimensional system,

is normalization condition for three-dimensional case, for one-dimensional case |‘P(x)|

that |‘P(x)|2 dx is the probability P of finding the particle between X and X +dXx .

P(between xand x +dx) =|¥ (x)

|2

Since the total probability of finding the particle anywhere must be 1, it follows that

T | (x)[ dx =1

—00

This relation is called the normalization condition and a wave function that satisfies it is said to be
normalized. The normalization condition defines the value of the constant A, which is therefore called the
normalization constant.

The Uncertainty Principle
One important consequence of the wave-particle duality of nature was discovered by Heisenberg, and is

called the uncertainty principle. To formulate it, let us imagine that we want to measure the position and
the momentum of a particular particle. To do so we must ""see" the particle, and so we shine some light of



wavelength 4 on it. You know that there is a limit to the resolving power of the light used to see the
particle given by the wavelength of light used. This gives an uncertainty in the particle's position:

AX ~ A (4.1)

This results from considering the light as a wave. However, viewed as a photon, the light, when it strikes
the particle, could transfer some or all of its momentum to the particle. Since we don't know how much it
transfers, as we don't measure the photon's properties, there is an uncertainty in the momentum of the
particle; using p =k7 , we find

Ap ~ h/A (4.2)
Combining equations (4.1), (4.2), we find
AXAp ~h (4.3)

Note that this is independent on the used wavelength, and there is a limit in principle as to how accurately
one can simultaneously measure the position and momentum of a particle - if one tries to measure the
position more accurately by using light of a shorter wavelength, then the uncertainty in momentum grows,
whereas if one uses light of a longer wavelength in order to reduce the uncertainty in momentum, then the
uncertainty in position grows. One cannot reduce both down to zero simultaneously - this is a direct
consequence of the wave-particle duality of nature.

The arguments used in deriving Eq.(4.3) are somewhat rough. A more refined treatment, developed by
Heisenberg, results in the following relation:

AXAp, 21 l2 (4.4)

As with de Broglie waves, for everyday macroscopic objects such as bowling balls the uncertainty
principle plays a negligible role in limiting the accuracy of measurements, as we shall see in some
examples. However, for microscopic objects such as electrons in atoms the uncertainty principle does
become a very important consideration. Another uncertainty relations:

AEAt>h/2

AyAp, 2 nl2
AZAp, 212

The Schrodinger equation

In physics, specifically quantum mechanics, the Schrodinger equation, formulated by Austrian
physicist Erwin Schrodinger, is an equation that describes how the quantum state of a physical system
changes in time. It is as central to quantum mechanics as Newton's laws are to classical mechanics. In the
standard interpretation of quantum mechanics, the quantum state, also called a wave function or state
vector, is the most complete description that can be given to a physical system. Solutions of Schrodinger's
equation describe not only molecular, atomic and subatomic systems, but also macroscopic systems,
possibly even the whole universe. The equation is named after Erwin Schrodinger, who constructed it in
1926.

The most general form is the time-dependent Schrodinger equation, which gives a description of a
system evolving with time. For systems in a stationary state, the time-independent Schrodinger equation
is sufficient. Approximate solutions to the time-independent Schrodinger equation are commonly used to
calculate the energy levels and other properties of atoms and molecules. Time-dependent equation for a
single particle with potential energy U , the Schrodinger equation takes the form:

2
—h—Aw+Uw=iha—w (4.5)
2m ot



hZ 2
where —2—A = —Z—VZ is the kinetic energy operator, where m is the mass of the particle.
m m

& 0
2= v +$ + el is the Laplace operator, \V(r,t) is the wave function.
X z

Time independent or stationary equation

The time independent equation, again for a single particle with potential energy U takes the form:

2m
At//+?(E—U)1//:0 (4.6)

This equation describes the solutions of the time-dependent equation, which are the states with definite
energy.

The Schrodinger equation has decisions not for any values of parameter E,, but only for some
selected values. These selected values are called as own values. The functions W(r) which are the

solutions of the Schrodinger equation at own values of E are called as own functions. In case of the
discreet spectra the own values and own functions can be enumerated:

E,E,...E.; ¥, W, V, ..

Particle in an infinite Rigid Box
Assume the potential U (X) to be zero inside in one-dimensional box of length | and infinite outside

the box (figure 4.1).
The Schrodinger equation for particle in box is:

+—Ey =0 4.7

Since the probability of finding of particle outside the box is zero, the wave function must go to zero at
the walls

W(0) = (1) =0 (4.8)
U—w U=0 U=m
=<0 0<x=<il xz!

v

Figure 4.1. Rigid Box
Solution of eq.(4.7) is:

w(x) = Asin(kx + a)
here k* = i—T E

At taking into account (4.8) wave function at the wall is:



w(0)=asina=0
w(l)=Asinkl =0

Form (4.9) one can find o« =0 and kl =+ -n. Itis following
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a)Diagrams of own functions of particle in the rigid box.
b)Density of the probability of particle finding in points of different values of x.
Figure 4.2.

Normalization and orthogonal conditions can be written in one expression as

1(n=m)

“wodxdydz =5, =
ijWn xayaz nm {O(nim)
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CONCEPT

DETAILS

Superposition principle

If ' and ¥, are possible waves,so s AY, + BY,

Time-independent Schridinger equation

Partick: in a one-dimensional rigid hox |sa
Boundary conditions
Allowed energies

Wave functions

a4 Im .

p - V) - Ely

Maves freely inside 0 = x = a but cannot escape outside
Y0y = la) =0

E, = r{n%j2ma")

Plx) =1 E‘ln'_'t'.'l"sln(ll‘r.'('."ﬂ:]

Normalization condition

S lpx)fdr =1

Behavior of wave functions

In classically forbidden zone (E < UF)

In classically allowed zone (E = U}

=0

Curves toward the axis and oscillates sinusoidally

Simple harmonic oscillator ™

Allowed energies

U =3k
E,= |:rr + Hhae

Tunneling *

Probability of tunneling

Ability of a quantum particle to penetrate inte a
classically forhidden zone

P =gl

. . -
Time-dependent Schrid mger equation

Problems.

1. Estimate uncertainty of the electron velocity in the hydrogen atom, taking into consideration
its size of the order of 10 cm. Compare the obtained value with the electron velocity on the first

Bohr orbit.

2. Assess the smallest error in determination of the velocities of the electron, proton, and

a

- d e ]
— A = o —— I AJr
”r'-r F(x.t) = s + Ufx) |¥(x. 1)

uranium atom trapped in a region with size of 1 micron.

2. Assess for an electron localized in a region of size | : a) the lowest possible kinetic energy, if
| =10"°cm ; b) the relative speed uncertainty Av/v, if its kinetic energy T ~10eV andl =1um.

3. Based on the uncertainty relation evaluate the electron coupling energy in the ground state of
the hydrogen atom and the corresponding distance of the electron from the nucleus.
4. Evaluate the lowest possible energy of the electrons in the He atom, and the corresponding

distance of the electron from the nucleus.
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